14 KiB
Generic DFA MCP Server
A Model Context Protocol (MCP) server that provides a generic deterministic finite automata (DFA) based workflow management system for LLMs.
Purpose
This server helps LLMs follow any structured workflow without losing context or randomly marking tasks as complete. It allows dynamic definition of custom workflows with states, transitions, and actions, ensuring agents follow predefined paths through complex multi-step processes.
Key Features
- Generic Workflow Engine: Define any workflow with custom states and transitions
- Dynamic Registration: Create new workflow types on the fly via MCP tools
- Context Preservation: Maintains full context throughout workflow execution
- Checkpoint & Rollback: Save and restore workflow states for error recovery
- No Hardcoded Logic: Completely generic - no assumptions about workflow purpose
- Judge System: Intelligent validation of transitions with confidence scoring
- LLM-Powered Judge: Optional AI-powered validation for deeper insights
- Pre-validation: Check if transitions are valid before executing them
- Custom Validators: Define business rules and requirements for each workflow
Installation
From npm (Recommended)
npm install -g dfa-mcp-server
Or install locally in your project:
npm install dfa-mcp-server
From Source
git clone https://github.com/your-username/dfa-mcp-server.git
cd dfa-mcp-server
npm install
npm run build
Configuration
Claude Desktop Setup
Add to your Claude Desktop MCP configuration:
Basic Configuration:
{
"mcpServers": {
"dfa-workflow": {
"command": "npx",
"args": ["dfa-mcp-server"]
}
}
}
With OpenAI:
{
"mcpServers": {
"dfa-workflow": {
"command": "npx",
"args": ["dfa-mcp-server"],
"env": {
"LLM_BASE_URL": "https://api.openai.com",
"LLM_JUDGE_MODEL": "gpt-4",
"LLM_API_KEY": "sk-your-openai-key"
}
}
}
}
With Custom Endpoint (Gemini via Veronica):
{
"mcpServers": {
"dfa-workflow": {
"command": "npx",
"args": ["dfa-mcp-server"],
"env": {
"LLM_BASE_URL": "https://your-llm-api-endpoint.com",
"LLM_JUDGE_MODEL": "gemini-2.5-pro",
"LLM_API_KEY": "sk-your-api-key"
}
}
}
}
Quick Start
Using as Global Command
After installing globally:
dfa-mcp-server
Using as Node Module
const { McpServer } = require('dfa-mcp-server');
// Server will start automatically when imported
Running the Server
For development:
npm run dev
For production:
npm start
Available Tools
workflow.define
Define a new workflow type with custom states and transitions.
Input:
name
: Unique workflow namedescription
: Optional workflow descriptionstates
: Object defining states and their transitionsinitialState
: Starting state name
Example:
{
"name": "approval-process",
"description": "Document approval workflow",
"states": {
"draft": {
"transitions": { "submit": "review" }
},
"review": {
"transitions": {
"approve": "approved",
"reject": "draft"
}
},
"approved": { "final": true }
},
"initialState": "draft"
}
workflow.list
List all registered workflow types.
Output:
workflows
: Array of registered workflows with names and descriptionscount
: Total number of registered workflows
workflow.start
Start a new instance of a defined workflow.
Input:
type
: Workflow type name (must be previously defined)context
: Optional initial context data (any JSON object)
Output:
id
: Unique workflow instance IDstate
: Current statenextActions
: Available actions from current stateprogress
: Current progress message
workflow.advance
Move workflow to next state by performing an action.
Input:
id
: Workflow instance IDaction
: Action to perform (must be in nextActions)data
: Optional data to merge into context
Output:
state
: New state after transitionnextActions
: Available actions from new stateprogress
: Updated progresscomplete
: Whether workflow has reached a final state
workflow.status
Get current status of a workflow instance.
Input:
id
: Workflow instance ID
Output:
state
: Current statecontext
: Full workflow context (all accumulated data)nextActions
: Available actionsprogress
: Current progresscomplete
: Whether workflow is complete
workflow.checkpoint
Create a checkpoint to save current workflow state.
Input:
id
: Workflow instance IDdescription
: Optional checkpoint descriptionmetadata
: Optional additional metadata
Output:
checkpointId
: Unique checkpoint IDworkflowId
: Associated workflow IDstate
: State at checkpointtimestamp
: When checkpoint was createddescription
: Checkpoint description
workflow.rollback
Rollback workflow to a previous checkpoint.
Input:
id
: Workflow instance IDcheckpointId
: ID of checkpoint to rollback to
Output:
state
: Restored statecontext
: Restored contextnextActions
: Available actions from restored stateprogress
: Progress after rollbackmessage
: Success message
workflow.listCheckpoints
List all checkpoints for a workflow.
Input:
id
: Workflow instance ID
Output:
workflowId
: Workflow IDcheckpoints
: Array of checkpoints (sorted by most recent first)count
: Total number of checkpoints
workflow.judge.validate
Validate a transition without executing it. Useful for pre-checking if an action is valid.
Input:
id
: Workflow instance IDaction
: Action to validatedata
: Optional data for the action
Output:
approved
: Whether the transition would be allowedconfidence
: Confidence score (0-1)reasoning
: Human-readable explanationviolations
: List of validation failures (if any)suggestions
: Helpful suggestions for fixing issues
workflow.judge.config
Configure judge settings for a workflow.
Input:
name
: Workflow type nameenabled
: Enable/disable judgestrictMode
: Optional - reject low confidence transitionsminConfidence
: Optional - minimum confidence threshold (0-1)
Output:
success
: Configuration update statusmessage
: Confirmation messageconfig
: Updated configuration
workflow.judge.history
Get the history of judge decisions for a workflow instance.
Input:
id
: Workflow instance ID
Output:
workflowId
: Workflow IDdecisions
: Array of judge decisionscount
: Total number of decisions
Example Workflows with Judge
1. Document Review with Validation
{
"name": "document-review",
"description": "Document review with strict validation",
"states": {
"draft": {
"transitions": { "submit": "reviewing" }
},
"reviewing": {
"transitions": {
"approve": "approved",
"reject": "draft"
}
},
"approved": { "final": true }
},
"initialState": "draft",
"judgeConfig": {
"enabled": true,
"strictMode": true,
"minConfidence": 0.8
},
"stateValidators": {
"reviewing": {
"requiredFields": ["documentId", "reviewer"]
}
},
"transitionValidators": {
"approve": "(data, context) => ({ valid: data.comments?.length >= 20, confidence: 1.0, reason: 'Detailed comments required' })"
}
}
Example Workflows
2. Todo Item Tracker
{
"name": "todo-tracker",
"description": "Track todo items through their lifecycle",
"states": {
"created": {
"transitions": {
"start": "in_progress",
"cancel": "cancelled"
}
},
"in_progress": {
"transitions": {
"complete": "done",
"pause": "paused",
"cancel": "cancelled"
}
},
"paused": {
"transitions": {
"resume": "in_progress",
"cancel": "cancelled"
}
},
"done": { "final": true },
"cancelled": { "final": true }
},
"initialState": "created"
}
2. Deployment Pipeline
{
"name": "deployment-pipeline",
"description": "Software deployment process",
"states": {
"ready": {
"transitions": { "deploy": "deploying" }
},
"deploying": {
"transitions": {
"success": "testing",
"failure": "failed"
}
},
"testing": {
"transitions": {
"pass": "live",
"fail": "rollback"
}
},
"rollback": {
"transitions": { "complete": "ready" }
},
"live": { "final": true },
"failed": { "final": true }
},
"initialState": "ready"
}
3. Multi-Step Form
{
"name": "form-wizard",
"description": "Multi-step form submission",
"states": {
"step1": {
"transitions": {
"next": "step2",
"save": "draft"
}
},
"step2": {
"transitions": {
"next": "step3",
"back": "step1",
"save": "draft"
}
},
"step3": {
"transitions": {
"submit": "processing",
"back": "step2",
"save": "draft"
}
},
"draft": {
"transitions": { "resume": "step1" }
},
"processing": {
"transitions": {
"success": "complete",
"error": "step3"
}
},
"complete": { "final": true }
},
"initialState": "step1"
}
Complete Example Usage
// 1. Define a custom workflow
await callTool('workflow.define', {
name: 'code-review',
description: 'Code review process',
states: {
submitted: {
transitions: { 'assign': 'in_review' }
},
in_review: {
transitions: {
'request_changes': 'changes_requested',
'approve': 'approved',
'reject': 'rejected'
}
},
changes_requested: {
transitions: { 'resubmit': 'in_review' }
},
approved: { final: true },
rejected: { final: true }
},
initialState: 'submitted'
});
// 2. Start a workflow instance
const result = await callTool('workflow.start', {
type: 'code-review',
context: {
pr_number: 123,
author: 'developer@example.com',
files_changed: 5
}
});
// Returns: { id: 'wf-123', state: 'submitted', nextActions: ['assign'] }
// 3. Assign reviewer
await callTool('workflow.advance', {
id: 'wf-123',
action: 'assign',
data: {
reviewer: 'senior@example.com',
assigned_at: new Date().toISOString()
}
});
// 4. Create checkpoint before making decision
const checkpoint = await callTool('workflow.checkpoint', {
id: 'wf-123',
description: 'Before review decision'
});
// 5. Request changes
await callTool('workflow.advance', {
id: 'wf-123',
action: 'request_changes',
data: {
comments: ['Please add tests', 'Update documentation']
}
});
// 6. If needed, rollback to checkpoint
await callTool('workflow.rollback', {
id: 'wf-123',
checkpointId: checkpoint.checkpointId
});
// 7. Approve instead
await callTool('workflow.advance', {
id: 'wf-123',
action: 'approve',
data: {
approved_at: new Date().toISOString(),
merge_strategy: 'squash'
}
});
File Structure
Workflows are persisted in the .workflows
directory:
definitions/
: Saved workflow definitionswf-{id}.json
: Current state and contextwf-{id}.log
: Transition history (append-only log)checkpoints/
: Saved checkpoints
Why Generic DFA?
This generic approach solves the common problem where LLMs:
- Lose track of their position in multi-step processes
- Skip required steps or prematurely mark tasks complete
- Forget context between interactions
- Fail to follow defined procedures consistently
By allowing dynamic workflow definition, any process can be modeled:
- Approval workflows
- State machines
- Multi-step wizards
- Pipeline processes
- Task lifecycles
- Any sequential process with defined states
LLM-Powered Judge (Optional)
Enable AI-powered validation by setting environment variables in your MCP configuration:
"env": {
"LLM_BASE_URL": "https://api.openai.com", // Or any OpenAI-compatible endpoint
"LLM_JUDGE_MODEL": "gpt-4", // Model to use
"LLM_API_KEY": "sk-your-api-key", // Your API key
"LLM_JUDGE_THINKING_MODE": "high" // Thinking depth (optional)
}
Supported Providers
Works with any OpenAI-compatible API:
- OpenAI (GPT-4, GPT-3.5)
- Anthropic Claude (via proxy)
- Google Gemini (via proxy)
- Local LLMs (LM Studio, Ollama)
- Custom endpoints
Using LLM Judge
{
"judgeConfig": {
"enabled": true,
"useLLM": true, // Enable LLM validation
"strictMode": true,
"minConfidence": 0.8
}
}
LLM vs Structural Judge
- Structural Judge: Fast, rule-based, deterministic
- LLM Judge: Understands context, provides nuanced feedback, catches semantic issues
- Fallback: If LLM fails, automatically uses structural validation
Judge System Benefits
The intelligent judge system improves workflow accuracy by:
1. Preventing Invalid Transitions
- Validates transitions before execution
- Ensures all prerequisites are met
- Prevents state corruption
2. Enforcing Business Rules
- Custom validators for each workflow
- Required field validation
- Complex condition checking
3. Confidence Scoring
- Quantifies transition validity (0-1 scale)
- Identifies uncertain operations
- Enables risk-based decisions
4. Helpful Feedback
- Clear explanations of rejections
- Specific violation details
- Actionable suggestions for fixes
5. Improved LLM Behavior
- Guides LLMs to follow rules correctly
- Reduces trial-and-error attempts
- Teaches through detailed feedback
Example Judge in Action:
Structural Judge:
LLM attempts: workflow.advance(id: "wf-123", action: "approve", data: {})
Judge rejects: "Missing required approval comments (min 20 chars)"
LLM Judge (with same attempt):
LLM attempts: workflow.advance(id: "wf-123", action: "approve", data: {})
Judge rejects: "Approval without comments lacks accountability. In document
review workflows, approvals should include: 1) What was reviewed,
2) Key findings, 3) Any conditions. This creates an audit trail."
Suggestions: ["Add detailed approval comments", "Include review findings",
"Mention any follow-up requirements"]
The LLM judge provides richer, context-aware feedback!